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Abstract
Unconventional oil and gas development has expanded
dramatically in the United States during the last 15 years. This
change in the energy industry has developed, modified, and
fragmented large areas of the terrestrial landscape, resulting in
hundreds of millions of dollars of annual ecosystem services
costs, including negative effects on agricultural production,
plant and wildlife populations, animal migrations, and human
well-being. The locations of the most active unconventional oil
and gas regions overlap ecologically valuable and, in some
cases, relatively intact natural habitats, but there are few
detailed studies that comprehensively investigate local
ecosystem services impacts of this recent activity. We highlight
impacts on the terrestrial landscape in three areas of the U.S.
that deserve particular attention: the eastern temperate de-
ciduous forest of the mid-Appalachian region, the prairies of
the Great Plains, and the Chihuahuan Desert of west Texas
and southern New Mexico. These regions cover large
geographic areas that are rich in ecosystem services, and
recently they have experienced some of the highest levels of
unconventional oil and gas activity. We make a call for targeted
studies to improve our understanding of how this development
will impact these ecosystem services and which strategies can
mitigate the negative impacts. The lessons learned from these
analyses could be applied to new energy development abroad,
which is currently under consideration by many nations with
probable unconventional oil and gas resources.
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Introduction
Natural landscapes provide numerous benefits to hu-
manity that are often under-appreciated by the public.
This value extends to semi-natural landscapes that have
been modified by humans, yet retain some semblance of
their natural state (e.g. grazing lands). These benefits
have been described and quantified by environmental
scientists and referred to as ecosystem services [1e3].
Examples of ecosystem services delivered at the local
scale include drinking water, raw materials, and recrea-
tional opportunities. Landscapes also provide services

with benefits that manifest on a global scale, such as
carbon storage, moderation of climate, and maintenance
of biodiversity. Ecosystem services therefore provide a
measureable monetary benefit to human societies that
has been estimated to equal more than the gross world
product (i.e. total economic output [4e6]).

Land-use changes from human activity can have
extensive impacts on ecosystem services through the
conversion and modification of land, a process that de-
grades ecological function. One of the biggest drivers of

land-use changes in the past and projected into the
future is energy development [7e12]. In particular, the
increase in unconventional oil and gas (defined here as
the combination of horizontal drilling and hydraulic
fracturing, often referred to as fracking [13]), currently
accounts for large amounts of land conversion across the
U.S. [12,14e16], with one estimate amounting to more
than 200,000 ha as of 2015 [11]. This land-use trend is
expected to continue in the U.S. and could expand
globally in the near future [17,18]. Unconventional oil
and gas development threatens the biodiversity and

ecological functioning of several temperate ecosystem
types, especially grasslands, deciduous forests, and de-
serts [11,15,19,20] (Fig. 1), as well as aquatic resources
[21,22]. If these landscapes continue to suffer high
impacts from this activity, we stand to lose significant
amounts of ecosystem services, which could translate
into high economic, social, and environmental costs
[11,15,22e29].

Unconventional oil and gas development tends to leave
a characteristic footprint on the landscape. Well pads,

access roads, and other supporting infrastructure
completely convert natural landscapes into artificial
structures. Pipelines typically alter landscapes from
natural cover into degraded or modified habitats
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Fig. 1

Depending on the habitat, certain ecosystem services play a larger role than others. In the U.S., major active unconventional oil and gas regions
disproportionately impact particular ecoregions. We highlight three major production areas (i.e. Marcellus, Bakken/Three Forks, and Permian Basin) that
have recently had rapid unconventional oil and gas development and where important ecosystem services are likely being lost. Since these areas
represent distinct bioregions with different prominent ecosystem services, there is a need for region-specific analyses of ecosystem services costs related
to land-use changes that accompany this development. These analyses can then be used to make appropriate mitigation and restoration recommen-
dations suited for the regional services.
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[11,16,30e32]. All of these activities fragment habitat
[14], a process beyond conversion that has profound
effects on many ecosystems [33,34] (Fig. 2). Uncon-
ventional oil and gas development occurs in particular

areas of the U.S., and therefore, certain bioregions are
disproportionately affected, specifically eastern
temperate deciduous forest, southwestern desert, and
short- and mixed-grass prairie [11,19] (Fig. 1). Several of
the largest development areas overlap or are expanding
into some of the last remaining and best examples of
these ecosystems [35e39]. In this paper, we describe
how the terrestrial systems of three of these uncon-
ventional oil and gas regions are being affected by the
boom in development, and discuss approaches to mini-
mize the land-use changes and their subsequent im-

pacts on ecosystem services.
Current Opinion in Environmental Science & Health 2018, 3:19–26
Examples
Appalachian deciduous forests
The Marcellus Shale, located in the central Appala-
chians, is the largest (in terms of land area and well
count) unconventional gas region in the U.S., covering
about 124,000 km2 [40]. Most of the landscape is
covered in natural forest, with some ecoregions within
the Marcellus Shale over 80% forested [41e43], and it
represents one of the largest and best remaining exam-

ples of temperate deciduous forest in the world [35]. It
has seen the construction of over 10,000 wells and
associated facilities since the year 2000 [32]. The pri-
mary ecosystem services provided by this region include
water provisioning, timber production, and recreational
opportunities, which are heavily utilized by the large
urban centers located nearby (about 52 million people
www.sciencedirect.com
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Fig. 2

Satellite view of temperate deciduous forest in the Marcellus Shale of Pennsylvania (a) in 2005 before, and (b) in 2016 after unconventional gas
development. Gas development is evidenced by the presence of structures such as well pads (W), roads (R), frackwater ponds (F), and pipeline rights-of-
way (P).
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live in the states that substantially overlap theMarcellus
Shale, i.e. New York, Pennsylvania, Ohio, Maryland, and
West Virginia). The annual ecosystem services of the

Delaware River Basin alone, which overlaps about 9% of
theMarcellus Shale, is estimated at $21 billion, dwarfing
any benefits of the shale gas economy, estimated at $425
million per year [44]. Given the rate of shale gas well
drilling and associated changes in land-use [32,35],
water pollution levels [45e48], and local responses in
wildlife [48,49], it is likely that the ecosystem services
costs are considerable and negatively affecting human
well-being in this region [22,50,51].

2: North American prairies
The prairies of the North American Great Plains, where
most natural grasslands survive, contain several areas

where unconventional oil and gas activity is high,
including the Bakken/Three Forks formations of North
Dakota and Montana, Barnett Shale of Texas, and
Niobrara Shale of Colorado, Kansas, Nebraska, and
Wyoming. Most of the landscape is either natural
grasslands used for grazing or highly modified land used
for row-crop agriculture, which both deliver important
provisioning ecosystem services in form of food pro-
duction to the greater U.S. and beyond [52,53]. The
natural habitat that remains is also one of the more
endangered bioregions in North America (i.e. short- and

mixed-grass prairies and sagebrush steppes [36,38], thus
it likely provides valuable habitat services that are not
well-represented elsewhere [15]. Since 2000, tens of
thousands of wells (mostly unconventional) have been
constructed in the Great Plains, which has resulted in
large land-use impacts, such as land conversion and
fragmentation [8,54,55]. Subsequently, the large range
of ecosystem services of this region are at great risk [15].
www.sciencedirect.com
The Chihuahuan Desert
The Chihuahuan Desert boasts a high amount biodi-
versity [56], important renewable resources [39], and
unique cultural services [39]. Large areas of the
Chihuahuan Desert have historically experienced low

development [57]. However, the northeast corner that
overlaps the Permian Basin, has seen decades of con-
ventional oil and gas development [58]. With the
development of high-volume hydrofracturing technol-
ogy, oil and gas drilling has increased rapidly [59] in the
Permian Basin, and thus the Chihuahuan Desert has
become one of the fastest growing unconventional oil
and gas regions in the U.S. This activity is also threat-
ening to expand outside the traditional boundaries of
the Permian Basin into other parts of the Chihuahuan
Desert (e.g. the Big Bend region) that may be particu-

larly valuable for ecosystem services [39,60].

What unites these three regions is the high conservation
value they retain. Although habitat throughout much of
the U.S. has been highly altered by human activity,
these regions have particular conservation and biodi-
versity interests represented at the landscape level.
Recent oil and gas activity threaten the ecosystem ser-
vices of these region, and we argue that they are worthy
of enhanced protection and strategic development
decisions.
Recommendations
While ecosystem services costs of unconventional oil
and gas development have been estimated at a national
level [11,15], there is need for detailed, location-

specific assessments of the major producing regions.
Ideally, ecosystem services values would be estimated
before oil and gas development proceeds, and thus plays
Current Opinion in Environmental Science & Health 2018, 3:19–26
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a role in determining where this activity should take
place and help minimize ecosystem services costs when
development does occur. If two regions are under
consideration, the region with highest total ecosystem
services values could be spared development. For
example, large areas of the Marcellus Shale are
composed of mature, nearly contiguous, and biodiverse
deciduous forest. The ecosystem services of this area

likely have increased importance because of the area’s
close proximity to large human populations, most
notably the Northeast Megalopolis (i.e. Boston e
Washington Corridor [61]).

If development is inevitable, placing new wells within
the existing oil and gas infrastructure (e.g. roads, pipe-
lines) could minimize the overall land-use changes
associated with this activity [31]. Such a strategy has
been implemented in the Bakken/Three Forks region of
North Dakota where new oil development sometimes

occurs along “energy corridors” that already have easy
road access, with the goal of lessening impacts on
important food production lands [8,62] (Fig. 3). A more
comprehensive approach could include developing
geographic models that incorporate variables of interest
to multiple stakeholders, which could lead to economic
benefits while limiting ecological impacts [63]. In
Fig. 3

Satellite view of an “energy corridor” in the Bakken/Three Forks oil and gas re
way (P), associated infrastructure (Inf), intensive agricultural fields (A), and n
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addition, planning could occur at the regional level so
that mitigation of impacts at one site might offset im-
pacts at another site [64,65].

Ultimately, we should also consider restoration of
damaged landscapes. The oil and gas industry has left
behind degraded landscapes impacted by old well pads,
roads, pipelines, and other infrastructure (Fig. 4). These

degraded lands represent an opportunity to lessen the
current damage being inflicted by the unconventional
fossil fuel revolution. We argue that the U.S. should
pursue a mandatory restoration policy when new oil and
gas development is proposed on ecologically valuable
land. In short, if you develop and/or degrade an area of
land, you must restore an area of similar habitat and
quality so that total ecosystem services are retained.
This type of restoration plan would focus on the services
provided by the landscape and not necessarily the size of
the area restored. Therefore, knowledge of the

ecosystem services provided by different regions needs
to be improved since currently, the region-specific in-
formation is lacking [11]. Further research into restora-
tion benefits in specific watersheds, ecoregions, or areas
of particular conservation interest (e.g. areas of high
endemism) would also be valuable in determining where
to focus restoration resources and what benefits would
gion of North Dakota showing well pads (W), roads (R), pipeline rights-of-
atural grasslands along a riparian zone (N).

www.sciencedirect.com
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Fig. 4

Satellite view of a portion of the Permian Basin region near Monahans, TX, showing abandoned oil wells and their long-lasting surface modifications to
natural landscapes. Features labeled include plugged wells (Wp), active wells (Wa), roads (R), and pipeline rights-of-way (P). The four wells labeled Wp
were abandoned between 1965 and 1998 [58].
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be gained (e.g. agricultural productivity, raw materials,

carbon storage, etc.) Another major issue would be the
legal aspects of this plan. Onshore oil and gas drilling is
typically permitted by state governments (with the
exception of federal lands), so an effective restoration
policy would probably have to be developed in each
state, no doubt a difficult undertaking in such diverse
political climates.

Since measurements of development and modification
of landscapes from oil and gas are reasonably well-
studied [8,9,11,16,28,31,35,66], we have a good under-

standing of the land-use footprint of this industry. What
is needed now is how that footprint translates into
ecosystem services costs. Once the area impacted and
the ecosystem services costs are known, these values can
be used to designate an area that could offer equivalent
ecosystem services for restoration. An example of this
model is the “Alpine High” gas field in southwest Texas
that is expected to host 3000 wells [59]. Although the
exact placement of this development is still uncertain,
the overall process will likely have a predictable land-use
footprint of modification and fragmentation. Nearby

areas of the Permian Basin in the same bioregion have
www.sciencedirect.com
extensive numbers of plugged and abandoned wells that

continue to incur ecosystem costs (Fig. 4), including
reduced climate regulating services (from lack of vege-
tation) and reduced recreational value. Since this
habitat is similar to the Alpine High field, these sites are
an appropriate place to focus restoration efforts to
counterbalance the impending ecosystem services costs
in the Alpine High field.

The more than 1.1 million wells that are currently
classified as abandoned, dry, or plugged in the U.S. [58],
represent an opportunity to restore some of these

important conservation landscapes that we have lost due
to oil and gas development. Restoration organizations
are active in some oil and gas regions (e.g. Oklahoma
Energy Resources Board, funded by a small tax on pro-
ducers and royalty owners), but considering the number
of inactive wells in the U.S., increased funding for
restoration efforts is clearly warranted.

The energy industry is predicted to be the largest driver
of land-use change in the U.S. into the near future [9],
and major conversion and fragmentation have already

been documented in the short span of this current boom
Current Opinion in Environmental Science & Health 2018, 3:19–26
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[8,11,15,35]. Unfortunately, this unconventional oil and
gas activity is focused in some of the North American
landscapes that still provide a great range of ecosystem
services. Even though these landscapes have experi-
enced anthropogenic impacts (e.g. logging and mining in
the Appalachians), in some cases they have partially
recovered to the point of being some of most ecologi-
cally and culturally valuable landscapes remaining in the

U.S. These potential impacts are not confined to North
America. Unconventional oil and gas development is
predicted to intensify across the globe, including regions
where similar habitats retain conservation value and
valuable ecosystem services, such as temperate forest in
China’s Yangtze Platform region and temperate grass-
land in Argentina’s Parana Basin [18].

While the mitigation strategies we suggest (i.e.
ecosystem service assessments, wise placement of new
development, and restoration) could reduce the impact

of unconventional oil and gas development, we should
also consider the long view. Unconventional oil and gas is
a temporary solution to our energy problems [67, 68]
with modest economic benefits at best (and some-
times net costs) for local communities [69]. We should
consider whether we want a short-term activity to leave
behind long-term damage and what costs to human well-
being future generations will incur because of our
decisions.
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