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Abstract

The double slit experiment performed with particles and parti-
cle detectors is used to clearly demonstrate the nonclassical behavior
of microscopic particles including the delayed choice experiment and
causality issues. The realist and orthodox interpretations are pre-
sented with an explanation of why most physicists prefer the latter.
The nature of a measurement is described precisely. The double slit
experiment is extended to provide an experimental basis for the ax-
ioms necessary to develop quantum mechanics.

1 Introduction.

When we first studied quantum mechanics as college students in the
1960’s, my colleagues and I were astounded by strange and weird con-
cepts like wave particle duality, the uncertainty principle, nonexistence
of trajectories, and collapse of the wave function. Today, sixty years
later, those same concepts have become part of our culture through
television shows like Star Trek, Sliders, Quantum Leap, and the NOVA
series. However, I suspect that today’s students find it almost as diffi-
cult as we did to accept a physical theory that contradicts so strongly
the Newtonian mechanics that we learned intuitively as children.

We know that moving objects have trajectories because we have
played baseball and soccer. We know that inanimate objects like base-
balls have a well defined nature and that their behavior is totally
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determined by initial conditions and the forces acting on them. All
inanimate objects familiar to us obey Newton’s laws. Yet the quan-
tum physicists tell us that all these familiar things are made up of
microscopic particles that do not obey Newton’s laws at all. What
rational person would believe this rubbish? In support of their ridicu-
lous claims, the quantum physicists give us convoluted explanations of
esoteric experiments and even more convoluted explanations of even
more esoteric mathematics.

What is needed is a simple experiment that we can all understand
and that unequivocally demonstrates the more disturbing properties
of microscopic particles. It would also be nice if the experiment had
actually been done and the results corroborated the strange predic-
tions of quantum mechanics. Richard Feynman described just such an
experiment in 1963: the double slit interference experiment that you
studied in introductory physics.1, 2, 3

The double slit experiment (DSE) was first reported to the Royal
Society of London by Thomas Young in 1803. Young did the ex-
periment with light waves (photons) and measured the interference
bands by observing the brightness of the light. Feynman proposed us-
ing modern technology to either do the experiment with electrons or
do it with photons and detect individual photons. Clinton Davisson
and Lester Germer had demonstrated electron diffraction in 1927, but
this is one of those esoteric experiments referred to previously. The
Feynman double slit experiment with individual electrons or photons
is easier to understand and confronts us with inescapable evidence of
the weirdness of microscopic particles. The experiment was not done
in the form that Feynman described until 1972.4 The experiment has
since been repeated in a multitude of forms that include all the aspects
described here.5

The first six sections of this article draw heavily on Reference 2.6

1Richard Feynman, The Feynman Lectures on Physics, (Addison wesley 1963),
Volume III, Chapter I.

2Richard Feynman, The Character of Physical Law, (MIT 1965), Chapter 6.
3This note is intended for students of introductory Quantum Mechanics. However, if

you have had no physics, you should find much of it interesting and comprehensible - you
can just ignore the equations.

4Am J of Physics, 41, p 639 - 644, 1972.
5The latest was in 2008. For exact references, see http://physicsworld.com/cws/article/

indepth/9745 and http://en.wikipedia.org/wiki/Bell test experiments#Loopholes.
6Reference 2 uses everyday language instead of technical terms, and may be more

accessible if you find my article too technical.
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Sections 7 and 8 discuss causality issues, Section 9 explains what
is meant by “measurement” in quantum mechanics, and Section 10
demonstrates how the axioms of Quantum mechanics follow from the
results of the double slit experiment.

2 Intrinsic properties of particles that

motivate the experiment.

Electrons and photons (and all other microscopic particles) exhibit two
important properties that are crucial to the importance of this exper-
iment. The first is that they all obey interference phenomena just
like waves. You have probably observed interference of light waves
passing through a double slit apparatus. It is firmly established ex-
perimentally that electrons behave the same way. In fact, double slit
interference has been demonstrated with electrons,7 neutrons,8 atoms,
9 and buckyballs.10

The second important property that electrons, photons, and all
other microscopic particles share is that they are always detected as
individual particles, not as waves. When you did the Milikan oil drop
experiment, you observed the motion of oil drops (or perhaps spheres
made of teflon, plastic, or glass) containing a small discrete number of
electrons. If any of those drops behaved as if it contained a fractional
number of electrons, you were probably suffering from eyestrain. It is
easy to believe that particles like electrons, protons, and neutrons are
always detected as a whole particle and never as a piece of a particle.
However, you may have imagined that you see light much as you hear
sound, and since sound is clearly a wave, light must be too. You
would be wrong: you see light very differently from how you hear
sound. Your retina is covered with many tiny rods and cones, and
when you see anything, individual photons are absorbed by these rods
and cones. Each photon causes a discrete electrochemical excitation
that is transmitted along the optical nerve. This is a very different
process from that of your eardrum which moves as a unit due to air
pressure variations spread over the entire eardrum.

7American Journal of Physics, Volume 42, pages 4-11, 1974
8Reviews of modern Physics, Volume 60, pages 1067 -, 1988
9Physical Review Letters, volume 66, page 2689 - , 1991

10Letters to Nature, Wave Particle Duality of C60 molecules, Markus Arndt, 1999
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Let me say this again to emphasize it. Your eyeball is covered with
a large number of photon detectors. When you see something, each
detector counts the number of photons it received and transmits that
number to the brain. Some of the detectors (the cones) can detect
the energy of the photons, and they transmit that value to the brain
also (thus providing color vision). Your eyeball works much like the
detector portion of a digital camera. You have never observed a light
wave in your life, but you have added up the numbers of photons
striking different places on your retina to create a diffraction pattern.

To me, the most convincing evidence that all particles, including
photons, are always detected as individual and whole particles was
observing the output of a particle detector on an oscilloscope. The
output is a series of pulses. Each pulse represents the passage of one
particle (a photon, an electron, or whatever) through the detector.
You get the same effect with an old fashioned geiger counter: each
click represents the passage of a particle through the detector. If you
have never had the opportunity to observe this, you should at least
read Wikipedia’s article on particle detectors.

All microscopic particles, including photons, exhibit these two prop-
erties: they form interference patterns when passed through a dou-
ble slit apparatus and they are detected individually as whole units.
Never is a piece of one detected. The pictures in the referenced arti-
cles clearly demonstrate that individual particles are being detected
as whole units, and that they form an interference pattern as more
and more of them are detected. These experiments have been done
with a great variety of microscopic particles, including photons. The
results of the experiments have all been the same for all of the various
particles. I will henceforth just use the generic word ‘particle’ and
not specify whether I am speaking of an electron, photon, neutron,
proton, buckyball, or whatever. They all behave the same in these
experiments.

3 The double slit experiment with par-

ticles.

In the basic experiment, we pass a large number of particles through
the double slit apparatus and let them strike detectors attached to
the screen as illustrated in Figure 3. The coordinate system that we
will use later is illustrated in the figure: the x axis points up, the y
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axis points out of page, and the z axis points to the right. The origin
is between the slits at the vertex of the angle θ rather than at the
coordinate axes illustrated in the figure.

Figure 1: Double Slit Apparatus.

We will have to take care that our particles are all going in the
same direction and all have the same wavelength. In other words, we
need a columnated beam of particles that all have the same momentum
because the de Broglia wavelength for all particles (including photons)
is just Planck’s constant h divided by momentum p,

λ = h/p.

For photons, we can generate the particles with a mercury lamp and
various filters and lenses just as you did when you performed the pho-
toelectric experiment. For charged particles, we can use an apparatus
similar to the electron gun that you used when you performed the
Thompson e/m experiment in introductory physics. The particles are
all going in the same direction if L1 >> d.

The screen on the right side of Figure 3 is covered with many closely
spaced particle detectors whose positions are indicated by the variable
x. For each experiment, we will pass a few billion particles through
the slit apparatus and record the number of particles striking each
detector. We will then make a histogram of the number of particles
arriving at each detector as a function of detector position.

First we close the lower slit requiring all the particles to pass
through the upper slit. The histogram we observe is illustrated in
figure 2. This is the same as the single slit diffraction curve produced
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Figure 2: Single slit histogram

by monochromatic waves that pass through a single slit that is 12
times as wide as the wavelength and then strike a screen four meters
away. We could obtain this same single slit pattern by either using
photons with wavelength 550 nm (green light) and a slit width of 6.6
µm or electrons accelerated through a potential of 10 Kv and a slit
width of .147 nm. The precise expression for single slit diffraction is

I(θ) = Imax

(

sinα

α

)2

, (1)

where θ = tan−1(z/L) is the angle θ in Figure 3, I(θ) is the intensity
at the angle θ, Imax is the maximum intensity at θ = 0, α is

α =
πa sin θ

λ
,

a is the width of the slit, λ is the wavelength of the monochromatic
light or the de Broglie wavelength of the particle (if it has mass), and
L is indicated in Figure 3. Derivations and explanations of Equation 1
can be found in most introductory physics texts. Another source is
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<http://en.wikipedia.org/wiki/Fraunhofer_diffraction

_(mathematics)>.
Of course we could close the upper instead of the lower slit thereby

forcing the particles to go through the lower slit. The result is exactly
the same except the pattern is displaced downward by the distance
between the slits. That distance is less than .1 mm so we can’t tell
the difference in the curves.

When we open both slits so the particles can go through either slit,
we see something entirely new. Figure 3 illustrates the histogram we
observe. Monochromatic waves passing through two slits separated

Figure 3: Double Slit histogram

by 100 times their wavelength would produce the same pattern on
a screen four meters from the two slits. We could obtain this same
double slit pattern by either using photons with wavelength 550 nm
(green light) and a slit separation of 55 µm or electrons accelerated
through a potential of 10 Kv and a slit separation of 1.23 nm. The
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precise expression for the double slit interference curve is

I = Imax cos
2

(

πd sin θ

λ

)[

sin (πa sin θ/λ)

πa sin θ/λ

]2

, (2)

where d is the slit separation, a is the slit width, θ is the angle in Fig-
ure 3, λ = h/p, h is Planck’s constant, and p is the momentum of the
particle. Derivations and explanations of this expression can be found
in most introductory physics texts. Perhaps a more convenient refer-
ence is http://en.wikipedia.org/wiki/Double-slit_experiment.

We see that if we force the particles to go through only one slit,
we obtain a single slit pattern. If we allow the particles to go through
both slits, we obtain a double slit pattern.

It is important to note that the shape of the double slit pattern
depends on the distance between the slits. If you increase that dis-
tance, the interference maxima get closer together. The only rational
interpretation of this is that in order for the particles to form a double
slit pattern, either each particle must interact with both slits or some
particles pass through the upper slit and some pass through the lower
slit, and the particles then interact with each other to form the double
slit pattern. The second possibility will be discredited by the next
experiment.

4 The double slit experiment with one

particle at a time.

In order to test the conjecture that some of the particles pass through
the top slit and some pass through the bottom slit, and then they
interact with each other to form the interface pattern, we do the ex-
periment with only one particle at a time passing through the double
slit apparatus. If the particles had to interact with each other to pro-
duce a double slit pattern, then passing one particle at a time through
the apparatus would destroy the pattern. However, we find that even if
we pass only one particle at a time through the apparatus, we still get
the two slit interference pattern. This was verified by the experiments
reported in references 3 and 4.

Up to this point the particles behave just like classical sound waves
except for the way they are detected. If you close one slit, each particle
goes through the other slit just as sound waves would. If you open both
slits, each particle interacts with both slits just like sound waves. With
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sufficient time, enough particles will accumulate to form an double
slit pattern just like sound waves. The only feature that distinguishes
particles from sound waves so far is that only one detector at a time
on the screen detects a particle. If we were using sound waves, all
the detectors located in bright fringes would fire at the same time.
We cannot turn down the amplitude of the sound wave until only one
quantum of sound energy at a time passes the slits and strikes the
screen because sound wave energy is not quantized.

Since each particle interacts with both slits, each particle’s energy
must get divided so that some goes through each slit. We try to
detect a particle going through both slits at the same time in the next
experiment.

5 Detect which slit.

The detectors on the screen in Figure 3 probably entirely absorb the
particle just like the sensors in your eye absorb photons. For this
experiment, we need a detector that will allow the particle to pass
through it while recording its passage. In other words, we need a de-
tector that absorbs some but not all of the particle’s energy. Actually,
most detectors used in the laboratory do just that. If you study the
design of particle detectors in Wikipedia, you will understand that by
adjusting the length of the detector along the direction of the particle’s
motion, you can adjust the amount of energy absorbed from zero to
100 per cent. Of course as you reduce the amount of energy absorbed,
you decrease the probability that the particle will be detected.

In order to detect how much of each particle goes through each
slit, we place detectors after each slit. If we make the slit detectors
very sensitive so that they detect everything that goes through their
respective slit, we observe that each particle goes through one slit or
the other. No particles divide their energy between the slits. Clearly,
the particles are not interacting with both slits. How can they then
make a double slit pattern? Well, they don’t! When we turned
on the slit detectors and formed a histogram from the outputs of
the detectors on the screen, we got the superposition of two single
slit patterns. These patterns are so much alike that their sum looks
just like the single slit pattern in Figure 2. It seems that detecting
which slit they go through forces them to go through one slit or the
other and also forces them to produce two single slit patterns instead
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of a double slit pattern. Although this experimental result may be
intuitively disturbing, it is nice that it agrees with the predictions of
quantum mechanics.

This latest particle behavior is quite distinct from that of sound
waves. If we measured how much of sound wave energy went through
each slit, we would find that the sound wave splits its energy equally
between the slits and still forms a double slit pattern. Particles on the
other hand, choose one slit or the other (when we measure which slit)
and form a single slit pattern.

This experiment has been done with photons11 and with atoms12.
The method they used to determine which slit the particle traversed
involved an entangled photon and measurements made on it. We
may have time to discuss these experiments in more detail after we
have studied entangled states. Despite the esoteric nature of these
experiments, they fully corroborate the results I have described in
this section.

6 Weakly detect which slit.

An incorrigible sceptic might argue that in the previous experiment
we destroyed the double slit pattern because our slit detectors were
too sensitive. They interfered with the particles too much. The ob-
vious solution is to make the detectors absorb less of the particles’
energy and thus be less sensitive. If we do this, the slit detectors will
miss some of the particles that eventually are detected by the screen
detectors. Our data will fall into three classes:

• Particles that are detected traversing the upper slit and then
striking the screen,

• particles that are detected traversing the lower slit and then
striking the screen, and

• particles that are not detected by either slit detector yet we know
they were there because they were detected at the screen.

The percentage of particles in the third group will increase if we de-
crease the sensitivity of the slit detectors. If we form histograms of
each class, the first two classes will form single slit patterns while the
third class will form a double slit pattern.

11Phys Rev letters, 84, pp 1 - 5, January, 2000,
12Phys Rev Letters, 81, pp 5705 - 5709, December, 1998
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There is no way to escape the conclusion that we determine how
the particles traverse the double slit apparatus by what we choose
to measure or not measure. If we measure which slit, the particles
accommodate and go through one slit or the other and then strike the
screen at places that form a single slit pattern. If we do not measure
which slit, the particles strike the screen at places that form a double
slit pattern. Since the double slit pattern depends on the distance
between the slits, the particles must interact with both slits if we do
not detect which slit they traverse.

I hope you are not uncomfortable with all this because it will get
worse in the next section.

7 Delayed Choice Experiment.

The previous experiment tells us that turning on the slit detectors
forces the particles to traverse only one slit and turning off the slit
detectors forces the particles to interact with both slits. The detectors’
settings (on or off) determine how the particle interacts with the slits.
What if the decision to turn the slit detectors on or off is made after
the particle has already passed through the double slit apparatus?
This is not too hard to do with the accurate timing available today
and the existence of particle storage devices that can hold a particle
isolated from all influence for several ns.

We place a particle storage device between each slit and its cor-
responding slit detector as illustrated in Figure 4. For photons, the
storage device is just an optical fiber loop, and for charged particles
it is just a magnetic field that causes the particle to go in circles.
Suppose the storage devices will delay the particles for 10 ns, and
we randomly change the settings on the detectors every 8 ns. The
particles have already interacted with the slits and are in the storage
device when the detectors’ settings are determined. But the detectors’

settings determine how the particle interacted with the slits, before the

detectors were set. In other words, the act of setting the detectors
controls something that happened in the past: how the particle inter-
acted with the slits. Although this delayed choice experiment has not
been done exactly as described here, slight variations have been done
a number of times,13 always with the results described here.

13Science, 315, no, 5814, pp 966 - 968, (2007) and references 11 and 12 here.
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Figure 4: Double Slit with storage devices and slit detectors

8 Interpretations.

The only credible interpretation of the experimental results is that the
act of measurement seems to influence the behavior of the particle, and
that this influence can go backwards in time. There are a plethora of
philosophical schemes to explain this strange behavior, but physicists
have reduced them to two competing paradigms: realist and ortho-
dox.14 The old school name for these interpretations are the hidden
variables and Copenhagen interpretations respectively, and you will
see these names in much of the older literature (Copenhagen equals
orthodox and hidden variables equals realist). You should be cau-
tious in your usage of the terms ’realist’ and ’realism’ because they
are widely used in philosophy, art, literature, and politics and they
mean different things to different people.

14For example, see David Griffiths. Introduction to Quantm Mechanics, page 3-4. Pren-
tice Hall, second edition 2005.
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How do the realist and orthodox paradigms interpret the experi-
ments we have been discussing? The realist would insist that the path
of the particle through the slits (whether it went through only one slit
or interacted with both slits) was real and had a precise value before
the particle entered the storage device. The realist would also have to
conclude that at least for some of the particles, the path through the
slits was changed when the particle passed through the slit detector
after passing through the slits. The action of the slit detectors exerted
an action backwards in time that changed the value of a physical prop-
erty in the past. We physicists have a strong aversion to changing the
past. In other words, we have a strong belief in causality. By causality,
I mean that if a physical property had a value yesterday, then there
is nothing you can do today to change what its value was yesterday.

The orthodox position on the other hand is that the path of the
particle through the slits is never real even if the particle is detected
by one of the slit detectors. When you detect a particle in the top
slit detector, what is real is the localization of that particle in the top
slit detector at that time. Although that reality is consistent with the
particle having gone through the top slit and not interacting with the
bottom slit, to conclude that the particle was really in the top slit
at an earlier moment of time is more than most orthodox adherents
would claim. They would be more likely to say that until the particle
is detected by either of the slit detectors or by a detector on the screen,
it has the potential to land anywhere on the screen. If it is detected
by a slit detector, then the probabilities of where it will land on the
screen are modified by that detection.

The orthodox position is that even though the particle was mea-
sured by a slit detector, and the only way it could have gotten to
the slit detector was through the slit, this does not require that the
particle was ever really in the slit at any time. This position may
seem to be evasive, but there are well established experimental results
that demonstrate this very thing. I am speaking of the tunneling of
particles through potential barriers that require more energy than the
particle has. This phenomena has been well known for so long that
tunneling diodes and tunneling electron microscopes are based on it.
The particle clearly moves from one side of the barrier to the other
because it is detected first on one side, then on the other. However, it
can’t ever be in the barrier without violating conservation of energy.

Some people will argue that the orthodox interpretation claims
that the detection of a particle in one of the slit detectors makes
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the path of the particle through the slits real retroactively in time.
Therefore, they conclude that the orthodox interpretation requires
that reality be created in the past and that this is just as large a
violation of causality as the realist position that requires that reality
be changed in the past. However, the previous two paragraphs expose
the fallacy of this argument. The orthodox position neither creates
nor changes anything in the past because it claims there is nothing
real in the past except what was measured in the past. Although what
I have just stated is true, it will have to be clarified when we consider
entangled particles and instantaneous creation at a distance (nonlocal
creation).15

9 Measurement.

I have shown experimentally that the process of measurement changes
the state of the system, and I have argued that it either changes the
past, projects reality into the past, or ultimately defines what is real.
Yet I have not provided a precise definition of what constitutes a
measurement. That was rather sloppy of me wasn’t it. Let me remedy
the situation.

I think Niels Bohr said it best when he said that a measurement is
an ‘irreversible magnification’. You will understand this better if you
study the operation of particle detectors. The basic unit of charge
is 1.6 (10)−19 C (actually one third of that if you consider quarks).
We just can’t measure this small a charge. However, if any particle
that produces an electromagnetic field (this includes uncharged parti-
cles like photons and neutrons) passes through some types of matter
(semiconductors and gases), then it will transfer small fractions of its
energy to many electrons and raise them to the conduction band in a
semiconductor or free them from the gas molecules in a gas. If there is
a large accelerating potential present, these electrons gain tremendous
energy from the external field, and they will liberate more electrons.
This produces an avalanche effect. The result is that the single parti-
cle being detected produces a pulse of many electrons whose combined
charges can be detected. This is obviously an irreversible amplification

15It is true that the orthodox interpretation requires nonlocal creation of reality. It
follows that different observers will disagree on the order in time in which measurements
were made. Consequently, they will disagree on which measurement actually created the
reality. But neither observer will observe creation going backwards in time.

14



just like a snow avalanche is. When a measurement occurs, entropy
increases, disorder increases, energy moves from high concentration to
low concentration, and the measurement can’t be undone.

I like the idea that the only things that are real are those things
that can’t be undone. If we could go back in time and change reality,
it wouldn’t be very real would it? I also like the way that the orthodox
interpretation of quantummechanics integrates so well with the second
law of thermodynamics.

10 Impact on the theory.

How do we use these experiments to guide us in the construction of
a theory of microscopic particles? Any useful theory predicts things,
so we must first decide what properties of microscopic particles are
predictable. For something to be predictable, it must be a consistent
measurement result. The positions at which individual particles land
on the screen are not consistent: each particle could land in any bright
fringe. Positions are not predictable. What is consistent is the prob-
ability of each particle’s landing at any position, i. e. the probability
density function (pdf) of each particle’s position. The pdf of position
is just the double slit interference pattern illustrated in Figure 3. It
is reproduced any time you repeat the experiment and it is predicted
by Equation 2. We will find that all observables16 exhibit this behav-
ior in all experiments with microscopic variables: specific outcomes
are not consistent but the probabilities of all possible outcomes are.
The only time a specific outcome is predictable is when a measure-
ment is performed, a specific value is obtained, and then the identical
measurement is repeated on the same system before it has time to in-
teract with anything.17 In this case, the same result will be obtained
the second time.

The actual value of an observable (position, momentum, etc.) is
not predictable because identical measurements of the observable on
identically prepared systems produce different results. The fact that

16An observable is a measurable physical property such as position or momentum.
17Note that position can not qualify for this special case of consistency because you can

not obtain a specific value from a position measurement device. All detectors are finite in
size, and you can only detect that the particle passed through the detector, not exactly
where it passed through. The only observables that can be specifically determined are
those that are quantized like energy and angular momentum.
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the actual value of an observable is not predictable arises from exper-
iment, not theory. How will this make quantum mechanics different
from classical mechanics? In classical mechanics, the values of all
observables are predicted as functions of time. Time is the only in-
dependent variable and all the observables are dependent variables
in classical mechanics. Prediction of the observables as functions of
time is the program of classical mechanics. What is the program of
quantum mechanics? Quantum mechanics predicts the probability
distributions of all the physical variables. In addition to time, posi-
tion is also an independent variable. The dependent variables are the
probability distributions.

If we return to the double slit experiment without slit detectors, we
see that the probability of any one particle striking at x on the screen
is predicted quite accurately by Equation 2. We must design our
quantum theory so that it reproduces Equation 2 as the probability
distribution for the positions of where the particles will strike the
screen.

It is shown in Appendix A that Equation 2 is just the magnitude
squared of the solution Ψ(r, t) to the Classical Wave equation that
matches the boundary conditions imposed by the slit and the screen.
The Classical Wave equation is written as Equation 10 in Appendix A,
and is reproduced here for convenience,

∇
2Ψ− 1

c2
∂2Ψ

∂t2
= 0, (10)

where c is the wave’s phase speed and ∇
2 is the Laplacian.

Since the square of the solution to Equation 10 predicts the exper-
imentally observed pdf, it seems reasonable to base our theory on the
following two ideas:

• for every particle, there exists a wave function that is a solution
of the Classical Wave Equation, Equation 10, that also meets
the boundary conditions imposed by how the particles were pre-
pared, and

• the probability density function of the particle’s position is the
magnitude squared of the particle’s wave function.

There are three problems with this proposed theory. They are

• Equation 10 does not conserve probability,

d

dt

∫

∞

−∞

(Ψ∗Ψ) dx 6= 0.
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The integral on the left hand side is the probability that the
particle is somewhere. We can normalize Ψ so the integral is
one today, but since its time derivative is non-zero, it may be
two tomorrow. What does this mean? The only reasonable in-
terpretation is that there are two particles tomorrow. There
is strong experimental evidence that electrons, protons, and all
other fermions are conserved. Any theory that does not conserve
probability cannot describe these particles. Incidentally, photons
are not conserved so they can be and in fact are described by
Equation 10.

• Equation 10 does not include the potential energy of the particle.
We know that the potential energy at a point must influence the
probability that the particle will be found at that point. For
example, we do not expect to find a particle in a region where
the potential energy is larger than the total energy of the particle.
Also, it should be very likely to find a particle in regions where
it moves slowly (because it hangs out there a lot). These will be
regions in which the potential is only slightly less than the total
energy of the particle.

• The proposed theory is incomplete. It only predicts the proba-
bility distribution of position. What about momentum, angular
momentum, energy, and all those other interesting physical prop-
erties?18

Before proceeding, I want to emphasize that photons are not con-
served so their wave function does actually satisfy the Classical Wave
Equation. Furthermore, the concept of potential energy is meaning-
less19 for photons as they have no mass and always travel at the speed
of light. The Classical Wave equation is the proper wave equation for
photon wave functions. On the other hand, the Classical Wave Equa-
tion is not suitable for fermions such as electrons, protons, neutrons,
and neutrinos because it does not conserve probability and fermions
are conserved. The rest of this section is devoted to obtaining a wave
equation for fermions not photons. Appropriately, we will henceforth

18I personally would be very interested in the probability distribution of charm when
choosing a particle with which to interact.

19Some authors use gravitational potential energy of photons to explain gravitational
redshift, but it is unnecessary to associate potential energy to the photon to provide a
rigorous explanation based on energy conservation. In any event, we are not attempting
a quantum theory of gravitation here.
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refer to our particles as fermions rather than as just particles.
Let us first tackle the conservation of probability problem. It is

easy to see that Equation 10 does not conserve probability by exam-
ining the solution for a standing wave on a string of length a,

Ψ(x, t) = sin(πx/a) cos(πct/a).

Substitution into Equation 10 verifies that this is a solution, and it is
obvious that
∫ a

0
Ψ∗(x, t)Ψ(x, t) dx = cos2(πct/a)

∫ a

0
sin2(πx/a) dx =

a

2
cos2(πct/a)

depends on time. The time dependence does not cancel out when we
form ψ∗(x)ψ(x) because both eiωt and e−iωt are solutions and the
general solution is a superposition of them. In our case,

Ψ(x, t) = sin(πx/a) cos(πct/a) = sin(πx/a)(eiωt + e−iωt)/2.

If the solution were restricted to

Ψ(x, t) = eiωt sin(πx/a),

then the time dependence would cancel in Ψ∗(x, t)Ψ(x, t). However,
the second time derivative in Equation 10 ensures that if e−iωtψ(x) is
a solution, then eiωtψ(x) is also a solution, thereby destroying conser-
vation of probability.

We must eliminate the second time derivative to conserve proba-
bility. However, we must do this in a way that retains the solution
we used in Appendix A to derive the observed pdf in Equation 2.
That solution is given by Equations 11 and 12 in Appendix A, which
I reproduce here for convenience,

Ψ(r, t) = e−iωtψ(r), (11)

where ψ satisfies Helmholtz’s Equation,
(

∇
2 + k2

)

ψ(r) = 0. (12)

The minimum change we can make to Equation 10 that preserves
probability is to replace the second time derivative with a first time
derivative multiplied by an arbitrary constant,

∇
2Ψ(r, t)− γ

∂

∂t
Ψ(r, t) = 0.
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Substituting e−iωtψ(r) into this trial equation produces

∇
2ψ(r) + iωγψ(r) = 0.

Comparison with Helmholtz’s equation (Equation 12) reveals that if
we choose

γ = −ik2/ω,
then our trial wave equation does reduce to Helmholtz’s Equation as
desired when Ψ = e−iωtψ(r). Replacing γ with −ik2/ω, our trial wave
equation becomes

∇
2Ψ(r, t) +

ik2

ω

∂

∂t
Ψ(r, t) = 0. (3)

This trial wave equation has limited usefulness until we determine
the meaning of k and ω. Substituting the function,

Ψ(x, t) = ei(kx−ωt),

into Equation 3 demonstrates that it is a solution. This function also
describes a plane wave moving in the x direction. If we set t = 0 and
plot the real part of this solution, cos kx, we see that it repeats itself
every time that x changes by 2π/k. The wavelength λ of a wave is
defined as the change in position required to cause a complete cycle
of the wave function, Therefore, we see that

λ = 2π/k or k = 2π/λ.

If we set x = 0 and plot the real part, cos(−ωt) = cosωt, we see that
the time required for it to repeat itself is ∆t = 2π/ω. This is the
period so

ω = 2π/∆t = 2πf,

where f is the frequency and is the inverse of the period. Knowing
how k and ω are related to the wavelength λ and the frequency f is
nice, but it is not useful unless we can measure λ and f or relate them
to other physical observables.

We can use the double slit experiment to relate λ and wave number
k to energy. If the particle is charged like an electron or proton, then its
energy is just the potential we use to accelerate it times its charge. The
wavelength is the same λ that appears in Equation 2 and determines
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where the interference maxima appear. It is clear from Equation 2
that the change in sin θ between interference maxima is

∆ sin θ = λ/d,

so
λ = d∆ sin θ.

The distance d between the slits and the distance L from the slits to
the detector are designed into the experiment. The distance ∆x be-
tween interference maxima can be measured directly. In Figure 3, that
distance is .04 m. Since the x values are much smaller that L in our
experiments, we can use the small angle approximation, sin θ =̇ tan θ,
so

∆ sin θ =̇ ∆ tan θ =
∆x

L
=
.04

4
= .01,

in our experiment. For electrons, we used a slit separation of d = 1.23
nm, so the wavelength of the electrons was

λ = d
∆x

L
= .0123 nm.

When we vary the energy and measure λ as described in the pre-
ceding paragraph, we find experimentally that they are related by

E =
4π2~2

2mλ2
=

~
2k2

2m
. (4)

I emphasize that this is an experimental result from the double slit
experiment described here. Of course electron microscopes built com-
mercially seventy years ago were based on the same relationship.

We are limiting our theory here to nonrelativistic fermions with
nonzero rest mass (like electrons and protons). Incidentally, all known
fermions have nonzero rest mass. We know from classical mechanics
that in the absence of potential energy, the energy of these particles
are related to their momentum p by

E =
p2

2m
.

Comparison to Equation 4 reveals that the momentum p is

p = ~k. (5)
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For nonrelativistic fermions, the velocity is just the momentum divided
by the mass,

v = p/m = ~k/m.

This can actually be checked with the double slit experiment by mea-
suring the time between when a detector at the slit detects the particle
and when a detector at the screen 4 m away detects the particle. The
particle’s velocity is just 4 m/(the time).

It is shown in Appendix C that the velocity of the particle is the
group velocity vg of the wave packet describing the particle, and this
velocity is given in given by Equation 25,

v = vg =
dω

dk
.

Combining the last two equations, we have

dω

dk
= ~k/m.

Integrating this last equation, we get

ω = ~k2/2m+ C,

where C is an integration constant. Multiplying by ~ produces

~ω =
~
2k2

2m
+ ~C = E + ~C.

We cannot measure absolute energy, we can only measure the change
in energy. Consequently, we can choose the zero for energy anywhere
we wish, and it is convenient to choose it where ω = 0. This sets
C = 0, and we have

~ω = E. (6)

It is reassuring that the relationship between E and ω for fermions
is the same as the relationship that the photoelectric effect experiment
requires for photons. We used the double slit experiment and the
classical behavior of wave packets to develop Equation 6 for fermions,
and still obtained the same result determined from the photoelectric
effect for photons. This relationship is valid for all known particles.

Now that we have ω and k in terms of measurable quantities, let us
return to our trial wave equation for nonrelativistic fermions (Equa-
tion 3),

∇
2Ψ(r, t) +

ik2

ω

∂

∂t
Ψ(r, t) = 0. (3)
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From Equations 6 and 4, we have

k2

ω
=

k2

E/~
=

k2

~2k2/2m~
=

2m

~
.

Substituting this into Equation 3, multiplying by −~
2/2m, and rear-

ranging, produces the Schrodinger Equation for a free particle,

− ~
2

2m
∇

2Ψ(r, t) = i~
∂

∂t
Ψ(r, t). (7)

We have developed a wave equations for free particles; how do we
add potential energy. Free particles are approximately20 described by
plane wave solutions,

Ψ(r, t) = eik·r−iωt.

If we substitute a plane wave solution into Equation 7, we obtain

~
2k2

2m
= E.

Using Equation 5, we see that this reduces to

E = p2/2m = kinetic energy.

This is a well known relationship from classical mechanics for particles
with no potential energy. Since large numbers of fermions, such as
you would find in a baseball, obey classical mechanics, we should try
to include potential energy in a way that is consistent with classical
mechanics. Consequentially, we just modify the last expression to
agree with classical mechanics for a particle with potential energy
V (r),

E = kinetic energy plus potential energy =
p2

2m
+ V (r).

The modification of Equation 7 necessary to obtain this expression for
a plane wave is

(

− ~
2

2m
∇

2 + V (r)

)

Ψ(r, t) = i~
∂

∂t
Ψ(r, t). (8)

This is Schrodinger’s equation. Its solutions are wave functions
that accurately describe the behavior of all nonrelativistic fermions.
We arrived at it in five steps:

20The approximation depends on the envelope function changing much more slowly than
the carrier.
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1. We recognized that the classical wave equation predicted the
interference pattern observed in the double slit experiment with
fermions;

2. We modified the classical wave equation to conserve probability
because fermions are experimentally conserved;

3. We used experimental evidence from the double slit experiment
to determine that momentum p and wave number k are related
by p = ~k;

4. We used the behavior of classical mechanical wave packets to
show that energy E and frequency ω are related by E = ~ω.

5. We incorporated potential energy into the Schrodinger Equation
in a way that was consistent with classical mechanics.

We need to check the last step by examining the behavior of fermions
with potential energy. One way to do this is to apply Schrodinger’s
equation to electrons bound to an atom. This has been done and
Schrodinger’s Equation accurately predicts the chemical properties of
all elements, and the energy levels of electrons in all elements except
for relativistic corrections. Another way is to study the behavior of
particles that tunnel through a potential barrier that is greater than
their energy. The Schrodinger Equation accurately predicts the be-
havior of tunneling diodes and tunneling electron microscopes.

Now that we have fixed our theory so that it conserves probability
and incorporates potential energy correctly, we will consider the lim-
itation that the only physical variable whose probability distribution
our theory predicts is position. Actually, this limitation should be
no surprise since we built the theory from the double slit experiment
and that experiment only measures position. However, we can get an
idea of how the theory will handle other variables if we modify the
experiment slightly and if you will allow me to be a little sloppy with
normalization.

We need to modify the source of particles so that more particles
reach the top slit than the bottom slit. We can do this by placing
a very narrow potential barrier in front of the bottom slit. If the
potential height of this barrier is slightly greater than the energy of
the particles, then the particles that reach the lower slit must tunnel
through. The fraction that successfully tunnel through the barrier is
determined by the height and width of the barrier, and it can be varied
from essentially zero to one.
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Let a2 be the fraction of particles that traverses the top slit and
b2 = 1 − a2 be the fraction that traverses the bottom slit. If a and
b are not equal, we get a different interference pattern, and we find
experimentally that we can predict the new pattern accurately if we
replace Equation 20 with

Ψ = (aψ1 + bψ2). (9)

We interpret aψt and bψb as the wave functions for the particles that go
through the top and bottom slits respectively. It is important to note
that Equation 9 is an experimental result. It the simplest modification
to Equation 20 that agrees with the experimental results when a and b
are not equal. Equation 9 is also suggested by our proposed quantum
theory. Since the fraction of particles going through the top slit is a2,
our proposed quantum theory requires the square of the wave function
for the top slit to be multiplied by a2. Consequently, we must multiply
the wave function ψ1 for the top slit by a (and the wave function ψ2

for the bottom slit by b).
Now suppose that we place very strong detectors after each slit.

Clearly, the top detector will detect a∗a = a2 of the particles and
the bottom slit will detect b∗b = b2 of the particles. I choose to use
a∗a instead of a2 because that allows a and b to be complex without
changing our results. There will be cases in the future in which a and
b might be complex. For each particle, the probability of its going
through the top slit is a∗a. So the possible outcomes of a ‘which
slit’ measurement are top and bottom with probabilities a∗a and b∗b
respectively.

The states ψ1 and ψ2 are called pure states for the ‘which slit’ mea-
surement. If the system is in the state ψ1, we know that a ‘which slit’
measurement will result in the top slit. We also know that whatever
the initial state, if a ‘which slit’ measurement results in the top slit,
then after the measurement the system is in the state ψ1. The initial
wave function

Ψ = aψ1 + bψ2

is a superposition of pure states. It is called a superposition state,
a mixed state, or just the state function. The measurement is de-
scribed by saying that it causes the initial state function Ψ to col-
lapse instantaneously to a pure state of the measurement. And not
just any pure state, it is the pure state corresponding to the value
that was measured. Philosophers describe this by saying that before
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the measurement the particle has various mutually exclusive potential
attributes. The measurement destroys some of those potentials and
actualizes only one.

We now have a recipe for predicting the probabilities of all the
possible outcomes of any measurement. The recipe is

• Construct the state function Ψ. It must satisfy Schrodinger’s
equation and incorporate all the knowledge we have about the
initial state of the system.

• Find the pure states of the measurement. This sounds scary, but
actually you have already had much of the math, and the first
semester of quantummechanics is devoted to learning how to find
the pure states. The pure states are just the eigenvectors of the
operator corresponding to the classical variable being measured.

• Write the state function as a superposition of the pure states.

• The probability of measuring any particular value α is the magni-
tude squared of the coefficient in the state function superposition
of the pure state that corresponds to α.

Our basic theory is complete. Now we need to learn how to find the
operators that correspond to physical observables and their eigenvec-
tors. These are the pure states. How to do this with examples is
presented in the next chapter.
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Appendices

A Derivation of the Double Slit Inter-

ference Pattern.

The double slit interference pattern described by Equation 2 was first
obtained for light waves so we will follow that procedure here. The
same derivation will work for particle waves such as the waves associ-
ated with electrons.

Light waves satisfy the classical wave equation,

∇
2Ψ− 1

c2
∂2Ψ

∂t2
= 0, (10)

where c is the wave’s phase speed and ∇
2 is the Laplacian. If we use

monochromatic light, then all the photons have the same frequency
ω = 2πf and wave number k = 2π/λ, where f is the frequency, λ
is the wavelength, and c = λf . With monochromatic light, we can
eliminate the time dependence of Ψ by substituting

Ψ(r, t) = e−iωtψ(r) (11)

into Equation 10, reducing it to Helmholtz’s Equation:

(

∇
2 + k2

)

ψ(r) = 0. (12)

Since Helmholtz’s Equation is a second order linear homogeneous
partial differential equation, there are an infinite number of indepen-
dent solutions.21 However, appropriate boundary conditions limit the
solution to a single unique solution. The complete solution that satis-
fies general boundary conditions is provided by the Kirchhoff Integral
Theorem,22, 23

ψ(r) =
1

4π

∮

S
[G(r, rs)∇sψ(rs)− ψ(rs)∇sG(r, rs)] · n̂s dS

+

∫

V
ρ(r)G(r, rs)dV, (13)

21All linear superpositions of functions of the form exp(± (ik · r) are solutions if |k| = k.
22See Equation 7.2.7 on page 806 of Methods of Theoretical Physics, P. M. Morse

and H. Feshbach, McGraw Hill, 1953 or go to the URL in footnote 23.
23https://en.wikipedia.org/wiki/Kirchhoff_integral_theorem
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where the field point r is inside the closed surface S, the source point
rs is on the surface S for the surface integral and inside S for the vol-
ume integral, ds is the elementary surface element, n̂s is the outward
pointing unit normal to the surface S, ∇s operates on rs, dV is the
elementary volume element, and G(r, rs) is the Green’s function for
the Helmholtz’s Equation.

In our case, the only source of particles is the one illustrated in
Figure 3 and located at z = −L1. As long as we chose our closed
surface to exclude negative z values (and we will do that) then ρ = 0
inside S, and the volume integral is zero. Our Kirchhoff Integral now
becomes

ψ(r) =
1

4π

∮

S
[G(r, rs)∇sψ(rs)− ψ(rs)∇sG(r, rs)] · n̂s dS , (14)

The Green’s function is a solution to the point source Helmholtz
equation,

(

∇
2 + k2

)

G(r, rs) = −4πδ(r − rs), (15)

where δ(r − rs) is the three dimensional Dirac Delta function.24 The
free field solution to Equation 15 is

g(r, rs) =
eikR

R
, (16)

where R = |r − rs|. This is called the free field Green’s Function
because it corresponds to a point source at rs with no boundaries.
Any solution to the homogeneous Helmholtz Equation,

(

∇
2 + k2

)

Gh(r, rs) = 0,

can be added to G(r, rs) without altering its being a solution to Equa-
tion 15. By adding homogeneous solutions, we can force G(r, rs) to
fit various desired boundary conditions on the surface S.

It is shown in Appendix B that we can use the xy plane containing
the barrier and the two slits for the surface S. This surface is labeled
S1 in Appendix B and in Figure 5, and we will henceforth refer to it
as S1, it is just the xy plane.

You will find in the literature two methods of applying Equation 14
to diffraction problems: Fresnel-Kirchhoff (FK)25and Rayleigh-Sommerfeld

24It is also shown on page 808 of Reference 22 that the Green’s Function is symmetric,
G(r, rs) = G(rs, r) if both r and rs are inside or on the surface S.

25https://en.wikipedia.org/wiki/Kirchhoff%27s_diffraction_formula
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(RS).26, 27 Both methods give the same result if the distances L1 and
L in Figure 3 are much larger than the size and spacing of the slits,
but the RS method is more mathematically consistent and predicts
Poisson’s spot (see Reference 26). The FK method assumes that both
ψ and n̂ ·∇ψ are zero on the barrier part of S1. Unfortunately, this
means that if ψ is an analytic function, then it is zero everywhere.
The RS method avoids this issue with a clever choice of G(r, rs) that
requires only ψ to be zero on the barrier.

Since z > 0 everywhere inside S, we can use the Green’s function,

G(r, rs) =
eikR

R
− eikR1

R1
, (17)

where

R =
√

(x− xs)2 + (y − ys)2 + (z − zs)2, and

R1 =
√

(x− xs)2 + (y − ys)2 + (z + zs)2.

This Green’s function is zero when z = 0 which is the case on the xy
plane and S1. With this choice of Green’s function, the first term,

G(r, rs)∇sψ(rs),

in the surface integral over S1 in Equation 14 is zero, and Equation 14
reduces to

ψ(r) = − 1

4π

∫

S1

[ψ(rs)∇sG(r, rs)] · n̂ dS1 . (18)

Appropriate boundary conditions on ψ are

ψ(x, y, 0) =
1√
2ab

in the slits, and

= 0 on the barrier where there are no slits,

where a and b are the width in the x direction and height in the y
direction of the slits respectively, and where the factor 1

√
2ab is a

normalization factor to require that
∫

S1

ψ2ψ dS = 1.

26Robert Lucke, Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchoff, Fourier Propaga-

tion, and Poisson’s spot, Naval Research Laboratory, Report NRL-FR-7218-04-10101, Dec,
30, 2004. This document can be found at www.dtic.mil/get-tr-doc/pdf?AD=ada429355

27https://statweb.stanford.edu/~candes/math262/Lectures/Lecture16.pdf
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The normal gradient of the Green’s function is

n̂ ·∇sG(r, rs)|z=0 = − ∂

∂zs
G(r, rs)

∣

∣

∣

∣

zs=0

= −
(

ik − 1

R

)

eikR

R

∂R

∂zs
+

(

ik − 1

R1

)

eikR1

R1

∂R1

∂zs
.

Note that R = R1 when zs = 0, and

∂R1

∂zs

∣

∣

∣

∣

zs=0

= − ∂R

∂zs

∣

∣

∣

∣

zs=0

=
z

R
= cos θ,

where θ is the angle between the z axis and the line to the detector
in Figure 3. We can now write the normal gradient of the Green’s
function as

n̂ ·∇sG(r, rs)|zs=0 = 2

(

ik − 1

R

)

eikR

R
cos θ.

With these results, the Kirchhoff Integral becomes

ψ(r) = − 1

2π

∫

S1

[

ψ(rs)

(

ik − 1

R

)

eikR

R
cos θ

]

dS1 .

In all double slit experiments, R >> λ so we can neglect terms
of order 1/kR = λ/ (2πR). Furthermore, the angle θ is usually very
small (less than .05 in out case), so we can replace cos θ with unity.
We finally arrive at the following integral for ψ,

ψ(r) = − ik

2π

∫

S1

ψ(rs)
eikR

R
dS1 . (19)

The only areas on S1 where ψ is not zero are the top and bottom
slits. The integral is the sum of the integrals over the top slit and
the bottom slit. Labeling these integrals as ψt and ψb respectively, we
have

ψ(r) = ψt(r) + ψb(r). (20)

The function ψt(r) is the contribution to the wave function from the
top slit, and ψb(r) is the contribution from the bottom slit.

First we evaluate ψt

ψt(r) = − ik

2π
√
2ab

∫ d/2+a/2

d/2−a/2

∫ b/2

−b/2

eikR

R
dxs dys .
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If we choose to make the height b of the slits about the same size
as their widths a, then |rs| << |r|, and we can expand R in powers
of rs/r where r = |r| and rs = |rs|. In order to determine how many
terms we must keep in our expansion, we examine the argument of
the exponential, eikR

kR = k
√

r2 − 2r · rs + r2s = kr

√

1− 2r · rs
r2

+
r2s
r2

= kr

(

1− r · rs
r2

+O
(rs
r

)2
++O

(rs
r

)3
+ · · ·

)

.

For our parameters, the wave number times the distance r from the
slits to the detectors is on the order of 2×107, and rs/r is less than 1.6×
10−5. We see that we must keep the linear term in the exponential,
but can drop all higher order terms. Furthermore, we can drop the
linear term in the R that is in the denominator because it is not
the argument of an exponential. Dropping these terms is called the
Fraunhofer Approximation.

One further simplification for our particular case is that we should
set y = 0 because our detectors are placed in the plane of the paper
in figure 3. With this choice and using the Fraunhofer approximation,
the expression for ψt becomes

ψt(r) = − ikeikr

2πr
√
2ab

∫ d/2+a/2

d/2−a/2

∫ b/2

−b/2
e−ikr·r

s
/r dxs dys

= − ikeikr

2πr
√
2ab

(

∫ d/2+a/2

d/2−a/2
dxs e−ikxxs/r

)(

∫ b/2

−b/2
e−ikyys/r dys

)

y=0

= − ik
√
ab eikr

2πr
√
2

e−(ikd sin θ)/2

(

sinα

α

)

,

where

α =
ka sin θ

2
=
πa sin θ

λ
, and sin θ = x/r.

The solution for ψb follows the same steps and produces

ψb(r) = − ik
√
ab eikr

2πr
√
2

e(ikd sin θ)/2

(

sinα

α

)

.

Adding ψt and ψb, we obtain the time independent solution for both
slits open,

ψ(r) = ψt(r) + ψb(r) = −
(

ik
√
ab eikr

πr
√
2

)

cos β

(

sinα

α

)

, (21)
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where

β =
kd sin θ

2
=
πd sin θ

λ
.

The time dependence is obtained by multiplying by e−iωt,

Ψ(r, t) = e−iωtψ(r).

We are actually interested in the intensity because that is what we
can measure,

I(θ) = Ψ∗Ψ = Io cos2 β

(

sinα

α

)2

, (22)

where Io is the maximum intensity which occurs when θ = 0.
Equation 22 was obtained by squaring the magnitude of the so-

lution to the classical wave equation for the appropriate boundary
conditions. It is identical to Equation 2 which is the observed double
slit interference pattern.

B Integration Surface for Kirchhoff In-

tegral.

The Kirchhoff integral requires a closed surface S. We will use the
union of the two surfaces illustrated with the dashed red curve in
Fig 5. Surface S1 is the xy plane containing the barrier with two slits
in it. Surface S2 is the hemisphere located to the right of the xy plane
with radius L2. The purpose of this Appendix is to show that in the
limit as L2 → ∞, the integral over S2 is zero, so we will only consider
that integral here.

There is no requirement that we use the same Green’s function
for both integrals as long as both are solutions to Equation 15. On
surface S2, we will use the free field Green’s Function of Equation 16,

g(r, rs) =
eikr

R
,

where R = |r − rs|.
Using this Green’s Function, both terms in the surface integral in

Equation 14 contribute so we must know the values of both ψ(rs) and
n̂ ·∇sψ(rs) on S2. Since S2 is located at infinity, we can take the limit
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Figure 5: Surface of Integration in Kirchhoff Integral.

as rs → ∞, and in this limit, the solution will be radially outgoing
waves,28, 29

lim
rs→∞

ψ(rs) =
eikrs

rs
f(ξs, φs), (23)

where r =
√

x2 + y2 + z2, ξ = cos−1(z/r), and φ = tan−1(y/x). It
is customary to use the symbol θ for the polar angle, cos−1(z/r),
rather than ξ, but I have already defined θ differently in Figure 3.
Interestingly, θ and ξ are the same when y = 0 which is where our
detectors are located.

Now that we have expressions for G(r, rs) and ψ(rs) on S2, we can
evaluate the integrand of the surface integral over S2 in Equation 14.
First we will state the following useful results:

1. The surface S2 is a hemisphere of constant rs so the unit normal
n̂s is just r̂s and

ns ·∇s =
∂

∂rs
.

2. We can write R =
√

r2s − 2rs · r + r2 as

R = rs

√

1− 2rs · r
r2s

+
r2

r2s
= rs

(

1− rs · r
r2s

+O
(

r

rs

)2
)

= rs in the limit as rs → ∞.

28The outgoing wave requirement is called the Sommerfeld Radiation condition and is
often expressed more generally as limr→∞ (r∂ψ(r)/∂r − ikrψ(r)) = 0.

29Substituting the outgoing wave solution into Helmholtz’s Equation and taking the
limit as r → ∞ shows that it is a solution in this limit.
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3. Writing rs as rs = rsr̂s, we see that

∂

∂rs
(rs · r) =

∂

∂rs
(rsr̂s · r) = r̂s · r

because r̂s is independent of the magnitude of rs, and rs = |rs|.
4. It follows that

∂R

∂rs
=

∂

∂rs

√

r2s − 2rs · r + r2 =
2rs − 2r̂s · r

2R
= 1, in the limit as rs → ∞.

We wish to evaluate the Kirchhoff Integral over surface S2 in the
limit as L2 → ∞ in Figure 5. In other words, we will take the limit
of the integrand as rs → ∞. We must remember that the surface
element dS contains a factor of r2s , so we must multiply the integrand
by r2s before we evaluate the limit. We can discard terms of order
r/rs and 1/krs as long as they are not multiplied by quantities that
approach infinity as rs approaches infinity. Labeling the first term of
the integrand in Equation 14 as Tf , we have

Tf = r2sG(r, rs) (n̂ ·∇sψ(rs)) = r2s
eikR

R

∂

∂rs

eikrs

rs

=
r2se

ik(R+rs)

Rrs
k

(

i− 1

krs

)

= ikeik(R+rs) in the limit as rs → ∞.

The second term is

Ts = −r2sψ(rs) (n̂ ·∇sG(r, rs)) = −r2s
eikrs

rs

∂

∂rs

eikR

R

= −r
2
se

ik(R+rs)

Rrs
k

(

i− 1

kR

)

∂R

∂rs

= −ikeik(R+rs) = −Tf in the limit as rs → ∞.

We see that the two terms cancel in the limit so the integral over S2
is zero.

C Wave velocity and particle velocity.

A simple solution to either the classical Wave Equation (equation 10)
or our trial particle wave equation (Equation 3) is a plane wave (PW)
traveling in the x direction,

Ψpwx(r, t) = ei(kx−ωt).
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However, this function is unsuitable to describe any particle that is
confined to our laboratory or even confined to our solar system because
the pdf, Ψ∗Ψ = 1, is one everywhere. In order to describe a particle
that is in our lab, we need a localized disturbance that is nonzero
in some finite region and is zero everywhere else. Such a function is
called a wave packet and is illustrated in Figure 6.30 This particle is

Figure 6: Wave Packet.

located around x = 7 nm. It is useful to think of the wave packet as
a product of two functions: the carrier which is just the PW solution
illustrated in Figure 7, and the envelop function f(x, t) illustrated in
Figure 8,

Ψ(x, t) = f(x, t)ei(kox−ωo(ko)t),

where ko and ωo are the wave number and frequency of the carrier
respectively, and where I have emphasized that ωo depends on ko by
writing ω(ko). This separation is useful because the PW solution is
simple and because the envelop function changes very slowly compared
to the PW solution. Only the envelope function contributes to the pdf,

Ψ∗Ψ = f∗f.

Since we prepare the particle in a specific way, we know the wave
function at t = 0,

Ψ(x, 0) = f(x, 0)eikox.

30I only plot the real part of the wave functions in these figures; the imaginary part
would look very similar.
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Figure 7: Carrier Wave.

Figure 8: Envelope function.

If this were a plane wave of wave number k, we could introduce the
time dependence by multiplying by e−iω(k)t. Unfortunately, f(x, t) in-
troduces an unknown time dependence. However, we can use a Fourier
transform31, 32, 33 to write f(x, 0) as a superposition of plane waves,

f(x, 0) =
1√
2π

∫ +∞

−∞

eik
′xg(k′) dk′ .

Since f(x) changes much more slowly than the carrier (see the figures),

31P. M. Morse and H. Feshbach Methods of Theoretical Physics, McGraw Hill,
1953. (page 453).

32G. Arfken, mathematical Methods for Physicists, second edition, Academic
Press, 1970. (Equation 6.52, page 314)

33https://en.wikipedia.org/wiki/Fourier_transform
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we expect that its plane wave superposition contains only low wave
number plane waves. In other words, g(k′) = 0 unless k′ << ko.

Now the wave function at t = 0 is a superposition of plane waves,

Ψ(x, 0) =
1√
2π

∫ +∞

−∞

ei(k
′+ko)xg(k′) dk′ ,

and when we introduce the time dependence, we must multiply by

e−iω(k′+ko)t = e−iω(k)t,

where k = k′ + ko is the overall wave number and therefore is the
argument of ω(k). Introducing the time dependence of Ψ(x, t), we
have

Ψ(x, t) =
1√
2π

∫ +∞

−∞

eikx−iω(k)t)g(k′) dk′ . (24)

It seems that we cannot proceed much further without knowing
how ω(k) depends on k; however, we can use the fact that k′ is small
to expand ω(ko + k′) about ko,

ω(ko + k′) = ω(ko) + k′
dω

dk

∣

∣

∣

∣

k=ko

+O((k′)2).

Dropping the second order term,34 defining

vg =
dω

dk

∣

∣

∣

∣

k=ko

and ωo = ω(ko),

and substituting into E 24, we have

Ψ(x, t) =
1√
2π

∫ +∞

−∞

ei(k
′+ko)x−i(ωo+k′vg)t)g(k′) dk′

=
ei(kox−ωot)

√
2π

∫ +∞

−∞

eik
′(x−vgt)g(k′) dk′

= ei(kox−ωot)f(x− vgt).

34If the detectors are about a mm in size, then the wave packet is about a mm in size and
k′ < 103. If an electron is passed through a potential of 10 KV, then its speed is 6 × 107

m/s, and it will travel across the lab in 10−7 seconds. Unless the second derivative of ω
is greater than 10, the second order term will not contribute between when the electron is
produced and when it is detected. It turns out that the second derivative is ~/m =̇ 10−4.
so the second term is negligible.
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This last expression shows that the envelope moves with velocity
vg. When time changes by ∆t then x must change by ∆x = vg∆t
to keep the argument of the envelope function f(x − vgt) constant.
Therefore, the position of the wave packet moves a distance vgt in a
time interval ∆t; vg is the velocity of the wave packet and the velocity
of the particle,

vg =
dω

dk

∣

∣

∣

∣

k=ko

. (25)
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